AMATIST	MATEMATICA	TT
ANALISE	IVIAIFIVIAIICA	11

1 Febbraio 2022

Cognome e Nome	N	Iatricola		
Firma	Corso di Laure	ea: \Diamond A	MBLT	\Diamond CIVLT

Istruzioni

- 1. COMPILARE la parte soprastante. In particolare, scrivere Cognome e Nome in stampatello e la firma sopra le corrispondenti righe punteggiate.
- 2. PROIBITO usare libri, quaderni, calcolatori, smartphone. TEMPO TOTALE a disposizione: 75 min.
- 3. Su ogni foglio protocollo scrivere Cognome, Nome, numero di matricola. Usare i fogli protocollo per la minuta dei calcoli (brutta copia) e come bella copia per l'esposizione dello svolgimento degli esercizi e per le domande di teoria. Ogni cosa va esposta e giustificata con completezza. Al termine si consegnano tutti i fogli protocollo.

ESERCIZI

1. Sia $D=\{(x,y)\in\mathbb{R}^2: x^2+2y^2\leq 2\}$. Siano $g(x,y)=e^{xy}$ e $M=\max_D g$ e $m=\min_D g$. Allora

$$\begin{array}{l} \textit{Risp.:} \ \boxed{\mathbf{A}} : M = e^{\sqrt{2}} \ \mathbf{e} \ m = \frac{1}{e^{1/\sqrt{2}}} \ \boxed{\mathbf{B}} : M = e^{1/\sqrt{2}} \ \mathbf{e} \ m = \frac{1}{e^{\sqrt{2}}} \ \boxed{\mathbf{C}} : M = e^{1/\sqrt{2}} \ \mathbf{e} \ m = \frac{1}{e^{1/\sqrt{2}}} \\ \boxed{\mathbf{D}} : M = 1 \ \mathbf{e} \ m = \frac{1}{e^{\sqrt{2}}} \ \boxed{\mathbf{E}} : M = e^{\sqrt{2}} \ \mathbf{e} \ m = 1 \end{array}$$

Punteggio: 6

2. L'integrale di superficie

$$\iint_S \frac{z}{\sqrt{1+9x^2+9y^2}} \, dS$$

dove $S = \{(x, y, z) \in \mathbb{R}^3 : z = 3xy, x^2 + y^2 - 2x \le 0, y \ge 0\}$ vale

$$Risp.: \begin{bmatrix} \mathbf{A} : 2\pi & \mathbf{B} : 2 & \mathbf{C} : 3/2 & \mathbf{D} : 3\pi/2 & \mathbf{E} : \pi \end{bmatrix}$$

Punteggio: 7

3. Data la successione di funzioni $\{f_n\}_{n\in\mathbb{N}}$ definita da

$$f_n(x) = \frac{x}{1 + n^2 x^2}$$
 $x \in \mathbb{R}$, $n \in \mathbb{N}$

stabilire se le seguenti affermazioni sono vere o false giustificando le risposte date:

- (a) $\{f_n\}_{n\in\mathbb{N}}$ converge puntualmente in \mathbb{R}
- (b) $\{f_n\}_{n\in\mathbb{N}}$ converge uniformemente in \mathbb{R}
- (c) la serie $\sum_{n=0}^{+\infty} f_n(x)$ converge puntualmente in $\mathbb R$
- (d) la serie $\sum_{n=0}^{+\infty} f_n(x)$ converge totalmente in \mathbb{R}

Punteggio: 7

DOMANDE DI TEORIA

Domanda 1. Sia $A \subseteq \mathbb{R}^3$ un aperto e sia $f: A \to \mathbb{R}$, $f \in C^2(A)$. Sia inoltre $\vec{x}_0 \in A$ un punto stazionario per f e $H_f(\vec{x}_0)$ la matrice hessiana di f in \vec{x}_0 . Dire se le seguenti affermazioni sono vere o false giustificando le risposte date:

- (a) Se gli autovalori di $H_f(\vec{x}_0)$ sono $\lambda_1=0, \lambda_2>0, \lambda_3>0$, allora il test della matrice hessiana è inefficace.
- (b) Se gli autovalori di $H_f(\vec{x}_0)$ sono $\lambda_1 < 0, \lambda_2 > 0, \lambda_3 > 0$, allora \vec{x}_0 è un punto di sella.

Punteggio: 4

Domanda 2. Sia $A \subseteq \mathbb{R}^2$ un aperto e sia $f: A \to \mathbb{R}$. Sia inoltre $(x_0, y_0) \in A$. Dire se le seguenti affermazioni sono vere o false:

- (a) Se f ammette in (x_0, y_0) tutte le derivate direzionali, allora f è continua in (x_0, y_0) .
- (b) Se f è differenziabile in A, allora f ammette in (x_0, y_0) tutte le derivate direzionali.
- (c) Se f è differenziabile in A e vale $\nabla f(x_0, y_0) = (0, 0)$, allora $f(x_0, y_0) = 0$.

Punteggio: 6