Prof. Paolo Secchi
[1] P. Secchi, Flussi non stazionari di fluidi incompressibili viscosi e ideali in un semipiano, Ricerche di Matematica 34 (1985), 27-44.
[2] P. Secchi, On the initial value problem for the equation of motion of viscous incompressible fluids in the presence of diffusion, Boll. UMI (6) 1-B (1982), 1117-1130.
[3] P. Secchi, A. Valli, A free boundary problem for compressible viscous fluids, J. Reine Angew. Math. 341 (1983), 1-31.
[4] P. Secchi, Existence theorems for compressible viscous fluids having zero shear viscosity, Rend. Sem. Mat. Univ. Padova 71 (1984), 73-102.
[5] P. Secchi, On the motion of viscous fluids in the presence of diffusion, SIAM J. on Math. Anal. 19 (1988), 22-31.
[6] V. Casulli, G. Pontrelli, P. Secchi, An Eulerian-Lagrangian method for open channel flows, Numerical Methods in Laminar and Turbulent Flow, Pineridge Press, Swansea, 1985.
[7] H. Beirão da Veiga, P. Secchi, Lp-Stability for the strong solutions of the Navier-Stokes equations in the whole space, Arch. Rat. Mech. Anal. 98 (1987), 65-69.
[8] P. Secchi, L2-Stability for weak solutions of the Navier-Stokes equations in R3, Indiana Univ. Math. J. 36 (1987), 685-691.
[9] P. Marcati, A. J. Milani , P. Secchi, Singular convergence of weak solutions for a quasilinear nonhomogeneous hyperbolic system, Manuscripta Mathematica 60 (1988) 49 - 69.
[10] P. Secchi, On the stationary and nonstationary Navier-Stokes equations in Rn, Ann. Mat. Pura Appl. (IV) 153 (1988), 293-306.
[11] P. Secchi, On the evolution equations of viscous gaseous stars, Ann. Scuola Norm. Sup. Pisa 36 (1991), 295-318.
[12] P. Secchi, On the motion of gaseous stars in the presence of radiation, Comm. P.D.E. 15 (1990), 185 - 204.
[13] P. Secchi, A note on the generic solvability of the Navier-Stokes equations, Rend. Sem. Mat. Univ. Padova 83 (1990), 177 - 182.
[14] P. Secchi, On the uniqueness of motion of viscous gaseous stars, Math. Methods Appl. Sci. 13 (1990), 391 - 404.
[15] P. Secchi, On nonviscous compressible fluids in a time-dependent domain, Ann. Inst. Henri Poincaré, Analyse non linéaire 9 (1992), 683 - 704.
[16] P. Secchi, On the motion of nonviscous compressible fluids in domains with boundary, Partial Differential Equations, Banach Center Publications, Warszawa, 27 (1992), 447 - 455.
[17] P. Secchi, On nonviscous compressible fluids in domains with moving boundaries, Non linear variational problems and P.D.E., Pitman Research Notes in Math. Series 320, ed. Marino & Murthy, Longman (1995), 229 - 244.
[18] P. Secchi, On a stationary problem for the compressible Navier-Stokes equations: the self-gravitating equilibrium solutions, Differential Integral Equations 7 (1994), 463 - 482.
[19] P. Secchi, On the stationary motion of compressible viscous fluids, Ann. Scuola Norm. Sup. Pisa 21, 1 (1994), 131 - 143.
[20] P. Secchi, On the equations of ideal incompressible magneto-hydrodynamics, Rend. Sem. Mat. Univ. Padova 90 (1993), 103-119.
[21] P. Secchi, On an initial boundary value problem for the equations of ideal magneto-hydrodynamics, Math. Methods Appl. Sci. 18 (1995), 841-853.
[22] P. Secchi, Linear symmetric hyperbolic systems with characteristic boundary, Math. Methods Appl. Sci. 18 (1995), 855-870.
[23] P. Secchi, Mixed problems for linear symmetric hyperbolic systems with characteristic boundary condition, Qualitative aspects and applications of nonlinear evolution equations (Trieste, 1993), World Sci. Publ., River Edge, NJ, 1994.
[24] P. Secchi, The initial boundary value problem for linear symmetric hyperbolic systems with characteristic boundary of constant multiplicity, Differential Integral Equations 9 (1996), 671-700.
[25] P. Secchi, Well-posedness of characteristic symmetric hyperbolic systems, Arch. Rat. Mech. Anal. 134 (1996), 155-197.
[26] P. Secchi, Well-posedness for a mixed problem for the equations of ideal magneto-hydrodynamics, Archiv Math. (Basel) 64 (1995), 237 - 245.
[27] P. Secchi, Characteristic symmetric hyperbolic systems with dissipation. Global existence and asymptotics, Math. Methods Appl. Sci. 20 (1997), 583-597.
[28] F. Gazzola, P. Secchi, Some results about stationary Navier-Stokes equations with a pressure-dependent viscosity, Proceedings of the International Conference on Navier-Stokes Equations, Theory and Numerical Methods, Varenna 1997, Pitman Research Notes Math. 388 (1998), 31-37.
[29] P. Secchi, A symmetric positive system with nonuniformly characteristic boundary, Differential Integral Equations 11 (1998), 605-622.
[30] P. Secchi, Inflow-outflow problems for inviscid compressible fluids, Commun. Appl. Anal. 2 (1998), 81-110.
[31] P. Secchi, The open boundary problem for inviscid compressible fluids, Proceedings of the 6-th Conference on Navier-Stokes Equations (Palanga, Lithuania, 1997), VSP, TEV, 1998.
[32] P. Secchi, Full regularity of solutions to a nonuniformly characteristic boundary value problem for symmetric positive systems, Adv. Math. Sci. Appl 10 (2000), 39 - 55.
[33] F. Gazzola, P. Secchi, Inflow-outflow problems for Euler equations in a rectangular domain, NoDEA 8 (2001), 195-217.
[34] P. Secchi, Some properties of anisotropic Sobolev spaces, Archiv Math. (Basel) 75 (2000), 207-216.
[35] P. Secchi, An initial boundary value problem in ideal magneto-hydrodynamics, NoDEA, 9 (2002), 441-458.
[36] P. Secchi, On the singular incompressible limit of inviscid compressible fluids, J. Math. Fluid Mech. 2 (2000), 107-125.
[37] P. Secchi, On the incompressible limit of inviscid compressible fluids, Proceedings NSEC7 Ferrara settembre 1999, Ann. Univ. Ferrara - Sez. VII - Sc. Mat. 46 (2000), 21-33.
[38] P. Secchi, Life span of 2-D irrotational compressible fluids in the halfplane, Math. Methods Appl. Sci., 25 (2002), 895-910.
[39] P. Secchi, On slightly compressible ideal flow in the halfplane, Arch. Rat. Mech. Anal., 161 (2002) 3, 231-255.
[40] E. Casella, P. Secchi, P. Trebeschi, Global existence of 2D slightly compressible viscous magneto-fluid motion, Port. Math. (N.S.), 59 (2002), 67-89.
[41] P. Secchi, Life span and global existence of 2-D compressible fluids, The Navier-Stokes Equations: Theory and Numerical Methods, ed. R. Salvi, Dekker 2002.
[42] E. Casella, P. Secchi, P. Trebeschi, Global classical solutions of 2D MHD system, J. Math. Fluid Mech., 5 (2003), 70 - 91.
[43] P. Secchi, Pointwise decay for solutions of the 2D Neumann exterior problem for the wave equation, Boll. UMI, (8) 7-B (2004), 189-206.
[44] P. Secchi, Pointwise decay for solutions of the 2D Neumann exterior problem for the wave equation II, Rend. Sem. Mat. Univ. Padova, 108 (2002), 67-77.
[45] P. Secchi, Y. Shibata, On the decay of solutions to the 2D Neumann exterior problem for the wave equation, J. Differential Equations, 194 (2003), 221-236.
[46] P. Secchi, 2D slightly compressible ideal flow in an exterior domain, J. Math. Fluid Mech. , 8 (4) (2006), 564-590.
[47] A. Morando, P. Secchi, On 3D slightly compressible Euler equations, Port. Math. (N.S.), 61 (3) (2004), 301-316.
[48] J.-F. Coulombel, P. Secchi, The stability of compressible vortex sheets in two space dimensions, Indiana Univ. Math. J. 53 (2004), 941-1012.
[49] J.-F. Coulombel, P. Secchi, Stability of compressible vortex sheets, Equadiff 2003, Hasselt, Belgium, World Scientific (2004), 502-504.
[50] J.-F. Coulombel, P. Secchi, On the transition to instability for compressible vortex sheets, Proc. Roy. Soc. Edinburgh, 134A (2004), 885-892.
[51] E. Casella, P. Secchi, P. Trebeschi, Non-homogeneous linear symmetric hyperbolic systems with characteristic boundary, Differential Integral Equations, 19 (2006), no. 1, 51-74.
[52] P. Secchi, On compressible vortex sheets, J. Math. Fluid Mech. 7 (2005), 128-146.
[53] P. Secchi, P. Trebeschi, Non-homogeneous quasi-linear symmetric hyperbolic systems with characteristic boundary, Int. J. Pure Appl. Math., 23 (1) (2005), 39-59.
[54] J.-F. Coulombel, P. Secchi, Nonlinear compressible vortex sheets in two space dimensions, Ann. Scient. Ec. Norm. Sup. 4e série, 41 (2008), 85-139.
[55] P. Secchi, On compressible and incompressible vortex sheets, in Analysis and Simulation of Fluid Dynamics, Advances in Mathematical Fluid Mechanics, ed. C. Calgaro, J.-F. Coulombel, T. Goudon, Birkhäuser (2006), 201-228.
[56] J.-F. Coulombel, P. Secchi, Nonlinear stability of compressible vortex sheets, Hyperbolic problems: Theory, Numerics, Applications, Proc. XI Int. Conf. Hyperbolic Problems, Lyon 2006, Eds. Benzoni-Gavage, D. Serre, Springer, 2008.
[57] J.-F. Coulombel, P. Secchi, Uniqueness of 2-D compressible vortex sheets, Comm. Pure Appl. Anal., 8 (4) (2009), 1439-1450.
[58] A. Morando, P. Secchi, P. Trebeschi, Regularity of solutions to characteristic initial-boundary value problems for symmetrizable systems, J. Hyperbolic Differ. Equ., 6 (4) (2009), 753-808.
[59] P. Secchi, An alpha model for compressible fluids, Discrete Contin. Dyn. Syst. Ser. S, 3 (2) (2010), 351-359.
[60] P. Secchi, A. Morando, P. Trebeschi, Hyperbolic problems with characteristic boundary, J. Nečas Center for Mathematical Modeling, Prague, Lecture Notes vol. 5 (2009), 113-166.
[61] D. Catania, P. Secchi, Global Existence and Finite Dimensional Global Attractor for a 3D Double Viscous MHD-alpha Model, Commun. Math. Sci., 8 (4) (2010), 1021-1040.
[62] D. Catania, P. Secchi, Global Existence for Two Regularized MHD Models in Three Space-Dimension, Portugaliae Mathematica 68 (1) (2011), 41-52.
[63] A. Morando, P. Secchi, Regularity of weakly well posed hyperbolic mixed problems with characteristic boundary, J. Hyperbolic Differ. Equ. 8 (1) (2011), 37-99.
[64] A. Morando, P. Secchi, Regularity of weakly well posed characteristic boundary value problems, Int. J. Differ. Equ. 2010, Article ID 524736, doi:10.1155/2010/524736.
[65] A. Morando, P. Secchi, P. Trebeschi, Characteristic initial boundary value problems for symmetrizable systems , Rend. Semin. Mat. Univ. Politec. Torino 67 (2009), no. 2, 229-245.
[66] A. Morando, P. Secchi, Weakly well posed characteristic hyperbolic problems, Riv. Mat. Univ. Parma 3 (2012), 147-162.
[67] D. Catania, P. Secchi, Global regularity for some MHD-alpha systems, Riv. Mat. Univ. Parma, 3 (2012), 25-39.
[68] J.-F. Coulombel, A. Morando, P. Secchi, P. Trebeschi, A priori estimates for 3D incompressible current-vortex sheets, Commun. Math. Phys. 311 (1), (2012), 247-275, arXiv:1102.2763v1.
[69] P. Secchi, Y. Trakhinin, Well-posedness of the linearized plasma-vacuum interface problem, Interfaces and Free Boundaries, 15 (2013), 323-357.
[70] P. Secchi, A higher-order Hardy-type inequality in anisotropic Sobolev spaces, Int. J. Differ. Equ., vol. 2012, Article ID 129691, 7 pages, 2012. doi:10.1155/2012/129691.
[71] P. Secchi, Y. Trakhinin, Well-posedness of the plasma-vacuum interface problem, Nonlinearity 27 (2014) 105-169.
[72] P. Secchi, On the Nash-Moser iteration technique, in "Recent Developments of Mathematical Fluid Mechanics", Series: Advances in Mathematical Fluid Mechanics, Edited by G.P. Galdi, J.G. Heywood and R. Rannacher, Birkhäuser-Verlag 2016, pp. 443-457.
[73] D. Catania, M. D'Abbicco, P. Secchi, Stability of the linearized MHD-Maxwell free interface problem, Comm. Pure Appl. Anal., 13 (6) (2014), 2407-2443.
[74] A. Morando, P. Secchi, P. Trebeschi, On a priori energy estimates for characteristic boundary value problems, J. Fourier Anal. Appl., 20 (4) (2014), 816-864.
[75] P. Secchi, Nonlinear surface waves on the plasma-vacuum interface, Quart. Appl. Math., 73 (4) (2015), 711-737.
[76] P. Secchi, On the amplitude equation of approximate surface waves on the plasma-vacuum interface, Springer Proceedings in Mathematics and Statistics 183 (2016), 181-201.
[77] A. Morando, P. Secchi, P. Trebeschi, Approximate current-vortex sheets near the onset of instability, J. Math. Pures Appl. 105 (2016), 490-536.
[78] P. Secchi, Data dependence for the amplitude equation of surface waves, Z. Angew. Math. Phys., 67 (2) (2016), 1-11, DOI 10.1007/s00033-016-0628-0.
[79] A. Morando, P. Secchi, P. Trebeschi, Existence of approximate current-vortex sheets near the onset of instability, J. Hyperbolic Differ. Equ., 14 (2) (2017), 193-248.
[80] A. Morando, P. Secchi, P. Trebeschi, Data dependence of approximate current-vortex sheets near the onset of instability, J. Hyperbolic Differ. Equ., 14 (3) (2017), 517-534, DOI 10.1142/S0219891617500175.
[81] D. Catania, M. D'Abbicco, P. Secchi, Weak stability of the plasma-vacuum interface problem, J. Differential Equations 261 (6) (2016), 3169-3219.
[82] A. Morando, P. Secchi, P. Trebeschi, On the weakly nonlinear Kelvin-Helmholtz instability of current-vortex sheets, NoDEA Nonlinear Differential Equations Appl. (2017) 24:34, DOI 10.1007/s00030-017-0462-x.
[83] G.-Q. Chen, P. Secchi, T. Wang, Nonlinear stability of relativistic vortex sheets in three-dimensional Minkowski spacetime, Arch. Ration. Mech. Anal. 232 (2019), no. 2, 591–695. https://doi.org/10.1007/s00205-018-1330-5.
[84] A. Morando, P. Secchi, P. Trebeschi, On the evolution equation of compressible vortex sheets, Mathematische Nachrichten, 293 (5) (2020), 945-969. https://doi.org/10.1002/mana.201800162.
[85] P. Secchi, Anisotropic regularity of linearized compressible vortex sheets, J. Hyperbolic Differ. Equ., 17 (3) (2020), 443--458. https://doi.org/10.1142/S0219891620500113.
[86] A. Morando, P. Secchi, Y. Trakhinin, P. Trebeschi, Stability of an incompressible plasma-vacuum interface with displacement current in vacuum, Math. Meth. Appl. Sci. 43 (2020), 7465-7483. https://doi.org/10.1002/mma.6488.
[87] G.-Q. Chen, P. Secchi, T. Wang, Stability of multi-dimensional thermoelastic contact discontinuities, Arch. Ration. Mech. Anal., 237 (3) (2020), 1271-1323. https://doi.org/10.1007/s00205-020-01531-5.
[88] A. Morando, P. Secchi, Y. Trakhinin, P. Trebeschi, On well-posedness of the plasma-vacuum interface problem with displacement current in vacuum, J. Phys.: Conf. Ser., 1666 (2020) 012053. DOI:10.1088/1742-6596/1666/1/012053.
[89] P. Secchi, Y. Yuan, Weakly nonlinear surface waves on the plasma-vacuum interface, J. Math. Pures Appl., 163 (2022), 132--203.
[90] A. Morando, P. Secchi, P. Trebeschi, D. Yuan, Nonlinear stability and existence of two-dimensional compressible current-vortex sheets, Arch. Rational Mech. Anal. (2023) 247:50, https://doi.org/10.1007/s00205-023-01865-w
[91] P. Secchi, Y. Trakhinin, T. Wang, On vacuum free boundary problems in ideal compressible MHD, Bull. Lond. Math. Soc., 55 (5) (2023), 2087-2111.
[92] P. Secchi, Y. Yuan, Geometric optics for surface waves on the plasma-vacuum interface: higher order expansion, NoDEA, Portugal-Italy Conference on NDEA, Évora, Portugal, July 4-6, 2022. CIM Series in Mathematical Sciences, vol 7. Springer, Cham.
[93] A. Morando, P. Secchi, P. Trebeschi, D. Yuan, On the existence and stability of 2D compressible current-vortex sheets, NoDEA, Portugal-Italy Conference on NDEA, Évora, Portugal, July 4-6, 2022. CIM Series in Mathematical Sciences, vol 7. Springer, Cham.
[94] P. Secchi, Y. Yuan, Geometric optics for surface waves on the plasma-vacuum interface, Hyperbolic Problems: Theory, Numerics, Applications. Volume I. SEMA SIMAI Springer Series, vol. 34, p. 351-360, Springer, Conf. Màlaga, Spain, 2024, doi: 10.1007/978-3-031-55260-1
[95] A. Morando, P. Secchi, P. Trebeschi, D. Yuan, Local existence of 2D compressible current-vortex sheets, In: Hyperbolic Problems: Theory, Numerics, Applications. Volume I. SEMA SIMAI Springer Series, vol. 34, p. 319-329, Springer, Conf. Màlaga, Spain, 2024, doi: 10.1007/978-3-031-55260-1
[96] A. Morando, P. Secchi, Y. Trakhinin, P. Trebeschi, D. Yuan, Well-posedness of the two-dimensional compressible plasma-vacuum interface problem, Arch. Ration. Mech. Anal., 248 (4), 56 (2024). https://doi.org/10.1007/s00205-024-02001-y.
[97] P. Secchi, Anisotropic regularity of weakly stable solutions to Majda’s hyperbolic mixed problem, J. Hyperbolic Differ. Equ., accepted for publication.
[98] P. Secchi, The incompressible limit of the equations of compressible ideal Magneto-Hydro-dynamics with perfectly conducting boundary, Commun. Math. Anal. Appl., 3 (2) (2024), 168–198, DOI: 10.4208/cmaa.2024-0009.
[99] A. Morando, P. Secchi, P. Trebeschi, L. Zhang, Two-Dimensional Nonisentropic Compressible Vortex Sheets, Mathematische Annalen, submitted.
[100] P. Secchi, A note on Ideal Magneto-Hydrodynamics with perfectly conducting boundary conditions in the quarter space, submitted.
[101] P. Secchi, Properties of anisotropic weighted Sobolev spaces, in preparation.
A copy of my papers can be requested directly to me by e-mail.